12,230 research outputs found

    Statistics of the General Circulation from Cumulant Expansions

    Full text link
    Large-scale atmospheric flows may not be so nonlinear as to preclude their statistical description by systematic expansions in cumulants. I extend previous work by examining a two-layer baroclinic model of the general circulation. The fixed point of the cumulant expansion describes the statistically steady state of the out-of-equilibrium model. Equal-time statistics so obtained agree well with those accumulated by direct numerical simulation.Comment: 1 page paper with 4 figures that accompanies one of the winning entries in the APS gallery of nonlinear images competitio

    Leak-rate of seals: effective medium theory and comparison with experiment

    Full text link
    Seals are extremely useful devices to prevent fluid leakage. We present an effective medium theory of the leak-rate of rubber seals, which is based on a recently developed contact mechanics theory. We compare the theory with experimental results for seals consisting of silicon rubber in contact with sandpaper and sand-blasted PMMA surfaces.Comment: 8 pages, 11 figure

    On the dependence of the leak-rate of seals on the skewness of the surface height probability distribution

    Full text link
    Seals are extremely useful devices to prevent fluid leakage. We present experimental result which show that the leak-rate of seals depend sensitively on the skewness in the height probability distribution. The experimental data are analyzed using the critical-junction theory. We show that using the top-power spectrum result in good agreement between theory and experiment.Comment: 5 pages, 9 figure

    Heat transfer between elastic solids with randomly rough surfaces

    Full text link
    We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.Comment: 23 pages, 19 figure

    A Rydberg tweezer platform with potassium atoms

    Get PDF

    Leak-rate of seals: comparison of theory with experiment

    Full text link
    Seals are extremely useful devices to prevent fluid leakage. We present experimental results for the leak-rate of rubber seals, and compare the results to a novel theory, which is based on percolation theory and a recently developed contact mechanics theory. We find good agreement between theory and experiment.Comment: 6 pages, 10 figure

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
    • …
    corecore